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Abstract: 9 

Experimental characterization and annotation of amino acids belonging to Domains of Unknown Function 10 

(DUF) proteins are expensive, and time-consuming which could be complemented by computational 11 

methods. Cysteine, being the second most reactive amino acid at the catalytic sites of enzymes, was 12 

selected for functional annotation and characterization on DUF proteins. Earlier we reported functional 13 

annotation of Cysteine on DUF proteins belonging to the COX-II family. However, holistic characterization 14 

of Cysteine functions on DUF proteins was not known, to the best of our knowledge. Here, we annotated 15 

and characterized Cysteine residues based on post-translational modifications (PTMs), biochemical 16 

pathways, diseases, taxonomy, and protein microenvironment. The information on uncharacterized DUF 17 

proteins was initially obtained from the literature and the sequence, structure, pathways, taxonomy, and 18 

disease information were retrieved from the SCOPe database using DUF IDs. Protein microenvironments 19 

(MENV) around Cysteine residues from DUF proteins were computed using protein structures (n=70342). 20 

The Cysteine PTMs were predicted using the in-house Cysteine-function prediction server, DeepCys 21 

https://deepcys.bits-hyderabad.ac.in). The accuracy of the prediction, validated against known 22 

experimental Cysteine PTMs (n=18626) was 0.79. The information was consolidated in the database 23 

(https://cysduf.bits-hyderabad.ac.in/), retrievable in downloadable formats (CSV, JSON, or TXT) using the 24 

following inputs, DUF ID, PFAM ID, or PDB ID. For the first time, we annotated Cysteine PTMs in DUF 25 

proteins belonging to seven different biochemical pathways and various species across the taxonomy, 26 

notably for the SARS-COV2 virus. The nature of MENV around Cysteine from DUF proteins was mainly 27 

buried and hydrophobic. However, in the SARS-COV2 virus, a significant number of functional Cysteine 28 

residues were exposed on the surface with hydrophilic microenvironment.  29 
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Introduction: 35 

Cysteine has unique chemical properties due to its reactive thiol group that undergoes a wide range of 36 

redox reactions and contributes towards various biological pathways. It can act as a nucleophile (S-) under 37 

physiological pH (pKa of cysteine thiol group is 8.1) and may serve as one of the key catalytic residues in 38 

many enzymes. Cysteine functions are broadly categorized into four groups, i) Structural cysteines, ii) 39 

metal-binding cysteines, iii) catalytic cysteines, and iv) regulatory cysteines (Marino and Gladyshev 2012). 40 

The biological functions of cysteines include redox properties, binding to co-factors, scavenging reactive 41 

oxygen species (ROS), and reactive nitrogen species (RNS), scavenging toxic heavy metal ions, etc. This 42 

variety of cysteine functions and their possible consequences on biochemical reactions make cysteine a 43 

suitable candidate for its function prediction in a given protein. With the advent of high-throughput 44 

screening, a large number of protein domains, Domains of Unknown Function (DUFs), were sequenced 45 

whose functions were uncharacterized. Experimental characterizations of amino acid functions for these 46 

DUF proteins were laborious and time-consuming. The computational approach could complement 47 

functional annotations of Cysteine amino acids on DUF proteins.  A total of 4775 DUF protein families were 48 

available in the PFAM database (v 35.0) (Mistry et al. 2021), including both Domains of Unknown Function 49 

(DUFs) and Uncharacterized Protein Families (UPFs) (Mudgal et al. 2015; Mistry et al. 2021). “SUPFAM” 50 

database curated all DUF proteins and provided the external link to the SCOPe database (Pandit et al. 51 

2004). Similarly, the “PathFams” database detected pathogen-assisted protein domains in DUF proteins 52 

(Lobb et al. 2021). The DUF proteins may belong to different biological functions, species, groups of 53 

organisms, or environmental conditions. Hence, the characterization of DUF protein function is crucial. 54 

DUF family proteins were reported to be involved in plant physiology, such as plant cell wall development, 55 

trichome development, plant stress responses, etc. (Luo et al. 2024; Lv et al. 2023). The disease-related 56 

DUF proteins were reported, such as pneumonia, neuronal diseases, viral infections, food-borne illnesses, 57 

fungal diseases, and many more (Goodacre, Gerloff, and Uetz 2014).  DUF characterization was 58 

accelerated using computational techniques, such as Phylogenetic Tree, Gene Expression Analysis, GO 59 

Analysis, DALI Search Algorithm (Behrens and Spielmann 2024; Huang et al. 2019), etc. Recently, 60 

bacterial signaling proteins, from DUF families, were characterized as GGDEF and EAL domains (Tong et al. 61 

2016). In Oryza Sativa (Rice), the function of the DUF568 was characterized using the phylogenetic tree, 62 

Gene expression, GO analysis, Co-expression, and protein-protein interaction (PPI) networks (Chen et al. 63 

2023). In Plasmodium falciparum, DUF proteins were characterized using DALI search on Alpha Fold 64 

predictions. In Agrobacterium tumefaciens, DUF1127 was predicted to be involved in phosphate and 65 

carbon metabolism, using sequence similarity (Kraus et al. 2020). Similarly, DUF692 was annotated as 66 

Multicellular non-heme iron-dependent oxidative enzymes, using sequence similarity (Ayikpoe et al. 67 

2023). Our recent study predicted post-translational modifications of Cysteine in the DUF proteins 68 

belonging to cytochrome C oxidase, subunit II-like transmembrane domains (COX II protein) 69 

(Nallapareddy et al. 2021). “Unknome” database reported experimentally annotated genes of the DUF 70 

proteins using RNA interference (RNAi) and knockdown techniques (Rocha et al. 2023). Apart from DUF 71 

sequences, only two PDB structures are available for DUF proteins. However, there are many DUF-related 72 

protein structures available in the PDB database (Burley et al. 2019). Due to the unavailability of DUF PDB 73 

structures, the structural information was extracted from the DUF-related protein PDBs, reported in the 74 

SCOPe database. The structural information was required for the computation of local protein 75 

microenvironments and subsequent characterization of biochemical pathways, taxonomic distributions, 76 

diseases, etc.  The protein microenvironment around Cysteines from DUF-related proteins could be 77 



calculated based on the structures of the globular proteins only. The protein microenvironment is known 78 

to modulate various biological activities, including molecular recognition, protein-protein interactions, 79 

alteration of amino acid pKa values, hydration and dehydration properties, etc. (Bandyopadhyay and 80 

Mehler 2008; Bhatnagar, Apostol, and Bandyopadhyay 2016a; Bhatnagar and Bandyopadhyay 2018; 81 

Najafi et al. 2025). The hypothesis in the current study is protein microenvironment will modulate the 82 

Cysteine post-translational modifications in DUF-related proteins, their biochemical pathways, and related 83 

diseases. This hypothesis was tested on four Cysteine post-translational modifications (limited due to the 84 

availability of the protein structures), namely, disulfide, metal-binding, thioether and sulfenylation (Figure 85 

1); seven biochemical pathways,  Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster 86 

Biogenesis, Fatty Acid Synthesis, Photosynthesis, Kreb’s Cycle, and Pentose phosphate pathway; and one 87 

hundred and fifty-six diseases within four taxonomic groups, according to NCBI Taxanomy(Schoch et al. 88 

2020). 89 

 90 

Figure 1: Schematic representation of four Cysteine post-translational modifications described in the 91 

CysDuF database. The figure was depicted using Microsoft power point 365 suite. 92 

Methods: 93 

1. DUF protein Dataset curation: 94 

DUF protein dataset was curated (May 22nd, 2024) from the SUPFAM database 95 

(http://proline.biochem.iisc.ernet.in/RHD_DUFS/) using the Python library, beautifulsoup4 96 

(version=4.12.3). The list of curated DUF proteins was filtered using two criteria. The first one was pathway 97 

names – Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis, Fatty Acid Synthesis, 98 

Photosynthesis, Kreb’s Cycle, and Pentose phosphate pathway. The second criterium was catalytic Cysteine 99 

in those pathways. The filtered information was saved in CSV format that contains the following columns, 100 

Pfam Accession (ID), DUF_ID, DUF name, and SCOPe ID.  The SCOPe database (Chandonia et al. 2022) 101 

was searched to extract SCOPe superfamily ID, family ID, and PDB ID, sequentially.   The flow of the data 102 

curation was shown schematically (Figure 2). The PDB IDs were obtained from different experimental 103 

http://proline.biochem.iisc.ernet.in/RHD_DUFS/


sources, namely, X-ray diffraction (n=5835), NMR studies (n=233), and Electron Microscopy (n=68) (Figure 104 

S1). The structures without reported experimental methods were discarded.  105 

All information was concatenated and saved in CSV format. This CSV file was utilized to develop the web 106 

server.  107 

 108 

 109 

Figure 2. Steps of DUF data curation. (i) extract and download a list of PFAM ID/DUF ID/ SCOPe ID using 110 

search criteria, a) pathway names, and b) catalytic Cysteines, from 111 

(http://proline.biochem.iisc.ernet.in/RHD_DUFS) (ii) filter the downloaded list using SCOPe superfamily 112 

resulting enzyme names from 7 biochemical pathways studied here (iii) search SCOPe database with SCOP 113 

ID to extract superfamily ID (iv) search SCOPe database with superfamily ID to extract family ID (v) extract 114 

PDB ID per family ID. The figure was generated using Microsoft Power point 365 suite. 115 

A total of 74 DUF proteins (Table 1), 6218 PDB IDs (Table S1), and 70342 Cysteine residues were reported. 116 

The maximum number of Cysteine residues belonged to the Electron Transport Chain (n=29638), followed 117 

by Glutathione metabolism (n=26656), Fe-S Cluster Biogenesis (n=24826), Fatty Acid Synthesis (n=9229), 118 

Photosynthesis (n=1145), Kreb’s Cycle (n=27), and Pentose Phosphate Pathway (n=18).  The biochemical 119 

pathway information was curated from the SUPFAM database4. 120 

There were eight cell organelles (cytoplasm, mitochondria, thylakoid membrane, periplasm, ROD Outer 121 

Segment (Eye), chloroplast, cell membrane, and nucleus) reported in the database. The cell organelle 122 

location information was curated from the PDB database.  123 

Table 1: List of DUF IDs and biochemical pathway names, curated from the SUPFAM Database  124 

S. N DUF ID Biochemical Pathways 

1 DUF459 Electron Transport Chain 



2 DUF460 Electron Transport Chain 

3 DUF461 Electron Transport Chain 

4 DUF462 Electron Transport Chain 

5 DUF463 Electron Transport Chain 

6 DUF464 Electron Transport Chain 

7 DUF465 Electron Transport Chain 

8 DUF466 Electron Transport Chain 

9 DUF467 Electron Transport Chain 

10 DUF468 Electron Transport Chain 

11 DUF455 Electron Transport Chain, Fe-S-Cluster Biogenesis 

12 DUF1863 Electron Transport Chain 

13 DUF3050 Electron Transport Chain 

14 DUF3291 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

15 DUF1636 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

16 DUF4405 Electron Transport Chain 

17 DUF3182 Fatty Acid Synthesis and Glutathione Metabolism 

18 DUF2764 Electron Transport Chain 

19 DUF1175 Fatty Acid Synthesis 

20 DUF521 Krebs Cycle and Fe-S-Cluster Biogenesis 

21 DUF2298 Electron Transport Chain 

22 DUF1015 Electron Transport Chain 

23 DUF4173 Photosynthesis 

24 DUF137 Electron Transport Chain 

25 DUF2652 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

26 DUF1691 Electron Transport Chain 

27 DUF3611 Electron Transport Chain 

28 DUF899 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

29 DUF3088 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 



30 DUF1574 Electron Transport Chain 

31 DUF4343 Fatty Acid Synthesis and Glutathione Metabolism 

32 DUF1287 Fatty Acid Synthesis 

33 DUF2214 Electron Transport Chain 

34 DUF2272 Fatty Acid Synthesis 

35 DUF4300 Fatty Acid Synthesis 

36 DUF1624 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

37 DUF2919 Electron Transport Chain 

38 DUF2231 Electron Transport Chain 

39 DUF4142 Electron Transport Chain, Fe-S-Cluster Biogenesis 

40 DUF2165 Electron Transport Chain 

41 DUF1352 Electron Transport Chain 

42 DUF3483 Electron Transport Chain 

43 DUF4344 Electron Transport Chain 

44 DUF4188 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

45 DUF1111 Electron Transport Chain 

46 DUF2338 Pentose phosphate pathway 

47 DUF2339 Pentose phosphate pathway 

48 DUF2340 Pentose phosphate pathway 

49 DUF2340 Electron Transport Chain 

50 DUF420 Complex IV of Electron Transport Chain 

51 DUF3581 Fatty Acid Biosynthesis 

52 DUF4333 Complex III of Electron Transport Chain 

53 DUF2387 Electron Transport Chain 

54 UPF0203 Complex III of Electron Transport Chain 

55 DUF1120 Complex III of Electron Transport Chain 

56 DUF1298 Fatty Acid Synthesis 

57 UPF0547 Electron Transport Chain 



58 DUF3613 Complex III of Electron Transport Chain 

59 DUF2872 Electron Transport Chain 

60 DUF1451 Electron Transport Chain 

61 DUF4523 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

62 DUF2414 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

63 DUF2414 Photosynthesis 

64 DUF4174 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

65 DUF4350 Electron Transport Chain 

66 DUF1450 Electron Transport Chain, Glutathione Metabolism, Fe-S-Cluster Biogenesis 

67 DUF973 Photosynthesis 

68 DUF1610 Electron Transport Chain 

69 DUF1440 Electron Transport Chain 

70 UPF0180 Electron Transport Chain 

71 DUF2194 Electron Transport Chain 

72 DUF2296 Electron Transport Chain 

73 DUF779 Fe-S-Cluster Biogenesis 

74 DUF2827 Uronic Acid Pathway 

 125 

2. Computation of Cysteine protein microenvironment (MENV) embedded in the DUF proteins: 126 

The protein microenvironments (MENV) around 70342 Cysteine thiol groups embedded in DUF proteins 127 

were computed using crystal structures. The cysteine protein microenvironment (three-dimensional 128 

spatial arrangement around Cysteine amino acid) was quantified as the summation of the 129 

hydrophobic/hydrophilic contributions (estimated by Rekker’s fragmental constants) (“Rekker, R. F. The 130 

Effect of Intramolecular Hydrophobic Bonding on Partition Experiments; 1967; Vol. 86,” n.d.) from the 131 

protein structure encompassed within the first contact shell (approximately 4.5 Å radius) 132 

(Bandyopadhyay and Mehler 2008) (Figure 3).  The weighted summation of the Rekker’s fragments 133 

constants within the first contact shell of the Cysteine amino acid was termed HpyA (Eq. 1)(Bandyopadhyay 134 

and Mehler 2008). Similarly, Hpys was expressed as the weighted summation of the Rekker’s fragmental 135 

constants of solvent molecules within the first contact shell. Hpys was derived from Molecular Dynamics 136 

Simulations with TIP3P water models (Jorgensen et al. 1983). Summation of HpyA and Hpys, weighted by 137 

the buried fraction (ζ) was reported as total Hpy (THpy) (Eq. 3)(Bandyopadhyay and Mehler 2008). The 138 

final property descriptor, the relative hydrophobicity, rHpy, was obtained by normalizing THpy by Hpys. 139 

The rHpy quantity is an intrinsic property and is independent of the size of an amino acid.  140 



Although the MENV calculation needed protein cartesian coordinates from any source, such as X-ray 141 

crystallography, NMR, SAXS, molecular modeling, etc., in this database, we selected only crystallography 142 

data. The input to the protein microenvironment, encoded in the FORTRAN language, was a three-143 

dimensional structure and the outputs were (i) buried fraction and (ii) rHpy (Bandyopadhyay and Mehler 144 

2008). The buried fraction was defined as the fraction of the surface of the functional group embedded 145 

within the protein (Pascual‐ahuir, Silla, and Tuñon 1994); that ranges from zero to one; zero buried 146 

fraction indicates the thiol group is completely exposed to the solvent, and vice versa. The upper limit of 147 

rHpy was formulated as one indicating the Cysteine thiol group was completely immersed in the aqueous 148 

solvent. There was no lower limit of rHpy; slight variations in the lower limits were observed depending 149 

on the dataset, for example, -0.3 (Bandyopadhyay and Mehler 2008) to -0.4 (Bhatnagar, Apostol, and 150 

Bandyopadhyay 2016b). The buried fraction and rHpy together constituted protein microenvironment 151 

space around a Cysteine thiol group. 152 

 153 

 154 

Figure 3: Depiction of Cysteine (Cys22) protein microenvironment (4.5 Å radius) (from PDB ID:8PCH), in 155 

stick representation.  Cysteine thiol group is depicted in yellow. The protein background is shown in 156 

cartoon representation. The figure was generated using VMD (Humphrey, Dalke, and Schulten 1996a) and 157 

Microsoft power point 365 suite. 158 

  159 

3. Prediction of Cysteine post-translational modifications in the DUF proteins: 160 

Cysteine post-translational modifications were predicted using the prediction server, DeepCys, based on a 161 

deep neural network and trained on protein crystal structures, developed by our group (Nallapareddy et 162 

al. 2021). Inputs to DeepCys were - the PDB ID of the DUF protein, chain ID, and the Cysteine residue 163 



number. DeepCys, being a multiple Cysteine function prediction tool, outputs probabilities of four Cysteine 164 

post-translational modifications, namely, Disulphide, S-Sulphenylation, Thioether, and Metal-binding.  165 

4. Clustering the protein microenvironment space around the Cysteine thiol group: 166 

The protein microenvironment space around the Cysteine thiol group was clustered using agglomerative 167 

hierarchical clustering (“Robert C.Tryon and Daniel E. Bailey. Cluster Analysis. New York McGraw-Hill, 1970. 168 

Pp. Xvii,” n.d.) implemented in a Python script and enabled with Scikit-Learn (1.1.1) and Matplotlib (3.5.3) 169 

libraries. Protein microenvironment space was divided into smaller bins of equal spacing [buried fraction 170 

= 0.1, rHpy = 0.1]. The clustering was done by using the subsampling method where only 10% subsample 171 

has been employed in the Python code.  The agglomerative hierarchical clustering initially considers each 172 

bin as a single cluster. The final clusters were defined based on the proximity of a data point (buried 173 

fraction, rHpy) to its nearest cluster center. The agglomerative hierarchical clustering resulted in three 174 

clusters.  175 

Results: 176 

Prediction of Cysteine post-translational modifications (PTMs) in CysDuF database: 177 

The DUF proteins curated in the CysDuF database were related to experimentally solved structures; 178 

however, the protein functions were not annotated. Four Cysteine functions were predicted, here, using 179 

the in-house Cysteine function prediction server DeepCys, based on protein structures. By design, DeepCys 180 

can predict any one of the four Cysteine functions for a given protein, namely, disulfide, thioether, S-181 

sulfenylation, or metal-binding. Out of 70342 cysteines in the DUF database, the majority were predicted 182 

as, thioether or metal-binding (Table 2). To note, the maximum number of Cysteine residues in this 183 

database belonged to the Electron transport chain (ETC). In Complex III of the ETC, thioether modification 184 

was reported (Daltrop et al. 2002) (Barker and Ferguson 1999). Cysteine thioether modification was also 185 

reported In the Glutathione metabolism (Townsend, Lushchak, and Cooper 2014), Fatty Acid 186 

Biosynthesis (Santiago-Tirado and Doering 2016), Kreb’s Cycle (Valcarcel-Jimenez and Frezza 2023), 187 

and Pentose phosphate pathway (Marcus et al. 2003). In Complex IV of ETC, the Cysteine residues from 188 

DUF proteins were mainly predicted as two modifications, metal binding and disulfide (Nallapareddy et 189 

al. 2021). The limitation of this structure-based Cys function prediction method, DeepCys, was that it 190 

could not predict other Cysteine modifications, for example, cysteine glutathionylation, nitrosylation, or 191 

persufidation in Complex IV of ETC (Martí, Jiménez, and Sevilla 2020). We have compared our predicted 192 

results with the ground truth (experimental results) reported in the respective PDB header files.  193 

Validation of the predicted post-translational modifications (PTMs) based on the experimental 194 

observations: 195 

 Predicted Cysteine PTMs were validated with the experimental findings reported in the respective PDB 196 

header files. There were only 18626 experimental PTMs reported for 70302 Cysteine in DUF proteins 197 

(Table 2).  198 

Table 2: Validation of the predicted post-translational modifications of DUF Cysteines (using DeepCys) with 199 

the experimental PTMs (from PDB header files): 200 



Cysteine PTM Number of 

Experimental 

Cysteine PTM 

Number of 

PTMs predicted 

using DeepCys 

Precision Recall F1-

score 

Thioether 1853   9154 0.19 0.94 0.31 

Metal-Binding 5615   2774 0.77 0.38 0.51 

Disulphide 11116   5605 0.91 0.46 0.61 

Glutathionylation 41  0  0 0 0 

S-Sulphenylation 0  1093 0 0 0 

Total 18626  18626     

Macroavg   0.37 0.35 0.28 

Weighted average   0.79 0.48 0.55 

Hence, the validation was restricted to 18626 Cysteines only.  Four different experimental Cysteine PTMs 201 

were reported, namely, disulfide, metal-binding, thioether, and glutathionylation. Whereas, the Cysteine 202 

PTM prediction software, DeepCys, predicted disulfide, metal-binding, thioether, and sulfenylation, only. 203 

The prediction was evaluated using the confusion matrix (Figure 4). This matrix was generated from the 204 

experimental and predicted Cysteine PTM numbers (Table 2). Several evaluation metrics were used to 205 

validate the prediction performances, namely, precision, recall, F1-score, accuracy, macro average 206 

(macroavg), and weighted average (Supplementary, Eq. 1-5). The prediction performances of different 207 

Cysteine PTMs varied (Table 2).  The overall accuracy of prediction was 0.79.  The prediction of true 208 

positives over false positives (precision) was the best for disulfide and metal-binding. Whereas, the 209 

prediction of true positives over false negatives was the best predicted for thioether. To note, S-210 

glutathionylation has no predictions reported and S-sulfenyaltion has no experiments reported.   211 



 212 

 213 

Figure 4: Confusion matrix to validate the predicted Cysteine PTMs (using DeepCys software) with the 214 

experimental (PDB header file) observations. The heatmap indicates the range of Cysteine numbers. 215 

Diverse protein microenvironments around Cys residues in the CysDuF database: 216 

From our earlier investigations, we observed that Cys residues were embedded in three different types of 217 

protein microenvironments, buried hydrophobic, intermediate, and exposed hydrophilic (Bhatnagar and 218 

Bandyopadhyay 2018). Here we explored two questions, i) whether diversity in the protein 219 

microenvironment existed around Cysteine in this database and ii) if it existed whether there were 220 

preferential Cysteine protein microenvironments towards different post-translational modifications, 221 

pathways, and diseases. The first question was addressed by clustering the protein microenvironment 222 

(MENV) space around all the Cysteine residues in the database. Two parameters, buried fraction (BF) and 223 

microenvironment property descriptor (rHpy), were used to cluster MENV space, using agglomerative 224 

clustering (Figure 5).  The largest cluster denoted that the Cysteine MENV was deeply buried in the protein 225 

core (high average BF value of 0.98) and significantly hydrophobic (low average rHpy value of 0.08) (Table 226 

3), hence, named as “buried-hydrophobic”. To note, according to the definition of buried fraction 227 

described in the method section, BF value of one indicated that the residue was fully buried inside the 228 

protein, and BF of zero indicated full exposure of the residue to the solvent. Similarly, according to the 229 

definition, rHpy of 1 indicated that the residue microenvironment was fully governed by solvent water 230 

molecules; thus, the microenvironment was completely hydrophilic. By definition, there was no lower limit 231 

of rHpy, that denoted the hydrophobicity of the residue microenvironment. More or less, this lower limit 232 

of rHpy value was decided by the dataset, for example, -0.3, in one dataset (Bandyopadhyay and Mehler 233 

2008) and -0.4 in another (Bhatnagar and Bandyopadhyay 2018). The second largest cluster exhibited a 234 

relatively high average buried fraction (0.81) but somehow moderate average rHpy value (0.38), indicating 235 

that the Cysteine residue despite being buried inside the protein, has a relatively hydrophilic protein 236 

microenvironment around it. This cluster appeared to be buried in nature yet hydrophilic, hence termed 237 



as, “buried-hydrophilic”. In one of our previous studies, a similar microenvironment cluster was reported 238 

that was more exposed (average BF, 0.77) to the solvent than the “buried-hydrophilic” cluster and also 239 

more hydrophilic (0.4); hence, it was classified as an “intermediate cluster” (Bhatnagar and 240 

Bandyopadhyay 2018). The least populated cluster was “exposed-hydrophilic” where the average BF of 241 

the Cys was 0.39 and the average rHpy was 0.68.  242 

Table 3: Statistics (average value) of Cysteine microenvironment clusters. The standard deviation (σ) is 243 

given within parentheses 244 

Cluster Type Average Buried Fraction 

(σ) 

Average rHpy (σ) Average 

distance to 

centroid (Å) 

No of Cysteines 

in each cluster 

No of PDB IDs 

in each cluster 

Buried 

Hydrophobic  

0.97 (0.03) 0.08 (0.12) 0.11 4517 2207 

Buried 

Hydrophilic 

0.81(0.12) 0.37(0.14) 0.15 2160 1333 

Exposed 

Hydrophilic 

 

0.39 (0.12) 0.67 (0.09) 0.14 366 294 

 245 

 246 

 247 

Figure 5: Distribution of Cysteine protein microenvironments, from DUF proteins, in three clusters, Buried 248 

Hydrophobic (Red), Buried Hydrophilic (Green), and Exposed Hydrophilic (Blue). The X-axis represents the 249 



Buried Fraction; the Y-axis, rHpy; and the Z-axis, populations of Cysteine. Three insets show the relative 250 

position of the Cysteine residue in three different protein microenvironments, Buried Hydrophobic (PDB 251 

ID: 8PCH), Buried Hydrophilic (PDB ID:7XAZ), and Exposed Hydrophilic (PDB ID:7UON). The figure was 252 

generated using i) Matplotlib (Hunter 2007), ii) VMD (Humphrey, Dalke, and Schulten 1996a) and iii) 253 

Microsoft power point 365 suite  254 

Distribution of Cysteine post-translational modifications in different microenvironments: 255 

Here, we investigated the second question, whether the Cysteine post-translation modifications exhibited 256 

preferences towards different Cysteine protein microenvironments. To answer this question, the 257 

normalized populations of different post-translational modifications across different microenvironment 258 

clusters were compared (Table 4). The cluster population (number of Cysteines in each cluster) was 259 

normalized by the number of Cysteines, per post-translational modification. The overall trend showed that 260 

all four modifications were maximally populated in the “buried-hydrophobic” cluster, followed by “buried-261 

hydrophilic” and “exposed-hydrophilic”. This agreed with the Cysteine microenvironment distribution 262 

reported above. The Cysteine was mostly populated in the “buried-hydrophobic” cluster, matched with 263 

the hydrophobicity scale, reported elsewhere, where Cysteine exhibited the largest hydrophobic value 264 

(Bandyopadhyay and Mehler 2008). This observation indicated that the predicted Cysteine post-265 

translational modifications, in general, followed the same trend as that of the Cysteine residue. 266 

 267 

Table 4: Normalized Cysteine populations of different post-translation modifications across 268 

microenvironment clusters 269 

Cluster Type Disulphide Metal-binding Thioether S-Sulphenylation 

Buried hydrophobic  0.62 0.66 0.63 0.62 

Buried hydrophilic  0.35 0.29 0.30 0.28 

Exposed hydrophilic  0.02 0.04 0.05 0.08 

 270 

Preferences of Cysteine post-translational modifications and their microenvironments towards different 271 

biological pathways: 272 

Cysteine is a dominant catalytic residue in all the biological pathways, mentioned in this database. We 273 

explored whether cysteine post-translational modifications and their microenvironments exhibited any 274 

preferences for different biological pathways. To investigate this question, the normalized populations of 275 

different Cysteine microenvironment clusters were compared across the proteins from different biological 276 

pathways (Table 5). The microenvironment cluster population (number of Cysteines in each cluster) was 277 

normalized by the number of Cysteines, per biological pathway. The Cysteine microenvironment was 278 

maximally populated in the “buried-hydrophobic” region in all the pathways, agreeing with the 279 

hydrophobic nature of the Cysteine residue. However, in the photosynthetic pathway and to some extent 280 

in Kreb’s cycle, the maximum Cysteine microenvironment was populated in the “buried-hydrophilic” 281 

region. There were six cysteines from Kreb’s cycle embedded in buried-hydrophilic microenvironments 282 

(Table S2), and sixty-eight from photosynthesis, also embedded in the same microenvironment (Table S3).  283 



In Kreb’s cycle, all six functional Cysteine residues were from the Aconitase enzyme. The predicted post-284 

translational modifications (PTMs) were thioether, metal-binding, and sulfenylation. The reported PTMs 285 

were metal binding (as Fe-S cluster), and oxidation of the sulfhydryl group (Figure 6). Thus, the predicted 286 

and the reported PTMs are fairly similar, indicating the reliability of the database and the prediction tool 287 

(DeepCys). To note, it has been reported that the Fe-S clusters in Aconitase have a hydrophilic 288 

microenvironment created by the polar groups (Robbins and Stout 1989) that matched with our current 289 

observations – functional Cysteines from aconitase were embedded in buried -hydrophilic 290 

microenvironment.  Similarly, in photosynthesis, the functional Cysteines mostly belonged to 291 

photosynthetic reaction center II proteins (like protein D1, D2, CP43, CP47, cytochrome C subunit), 292 

Cytochrome c-550, etc. A significant percentage of these Cysteines were embedded in the buried-293 

hydrophilic microenvironments. To note, most of the photosystem II proteins were membrane proteins 294 

and not globular proteins. However, the MENV computation was designed only for globular proteins, 295 

where the surface of a protein was exposed to water molecules, in contrast to membrane proteins, 296 

exposed to the lipid bilayer. The predicted PTMs were mainly thioether and metal bindings. 297 

 298 

a.) Electron Transport Chain(Hayashi and Stuchebrukhov 2010; Sun et al. 2005; Iwata et al. 1998; 299 

Tsukihara et al. 1996) 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 



b.) Fe-S-Cluster Biogenesis(Rouault and Tong 2008) 308 

Left panel : Yeast ; Right Panel : Human 309 

 310 

 311 

c.) Glutathione Biosynthesis 312 

 313 

 314 



d.) Fatty acid Biosynthesis 315 

 316 

e.) Krebs cycle(Martí, Jiménez, and Sevilla 2020) 317 

 318 

 319 

 320 



f.) Pentose phosphate pathway(Ge et al. 2020) 321 

 322 

Figure 6: Schematic representations (generated using VMD (Humphrey, Dalke, and Schulten 1996b), 323 

PubChem (Kim et al. 2021), and Microsoft Power-Point 365 Suite) of Cysteine post-translational 324 

modifications (PTMs) reported in the literature in different pathways 325 

 326 

Table 5: Normalized Cysteine populations in different biological pathways across microenvironment 327 

clusters  328 

 329 

 330 

Preferences of Cysteine post-translational modifications and their microenvironments towards different 331 

taxonomic kingdoms: 332 

The DUF proteins were classified into four different taxonomic kingdoms, namely Bacteria, Archaebacteria, 333 

Viruses, and Eukaryotes, as per NCBI Taxonomy. (Federhen 2012). A total of 607 organisms were reported 334 

Cluster type Electron 

Transport 

Chain  

Glutathione 

Metabolism 

Fe-S-Cluster 

Biogenesis 

Fatty Acid 

Synthesis 

Photosynthesis Krebs Cycle Pentose 

phosphate 

pathway 

Buried 

hydrophobic  

0.60 0.74 0.60 0.73 0.42 0.57 0.5 

Buried 

hydrophilic  

0.33 0.22 0.33 0.24 0.54 0.42 0.25 

Exposed 

hydrophilic  

0.06 0.03 0.06 0.02 0.03 0 0.25 



in this database. Simple trees were constructed to represent the taxonomic variations (Figure 7 and Figure 335 

S2). The highest number of species was observed for Bacteria, pathogenic and non-pathogenic (n=342).  336 

The disease-causing bacterial species, classified according to their taxonomy were represented by a simple 337 

tree (Figure 8). The complete list of the species name and corresponding diseases were shown (Table S4). 338 

The literature report also suggested that most of the DUF proteins belonged to kingdom bacteria 339 
3,(Goodacre, Gerloff, and Uetz 2014). The second largest kingdom in this database was Eukaryotes. The 340 

DUF proteins from Kingdom Virus (n=25), were reported for the first time. All the viruses reported were 341 

disease-causing (Table S4). Here, we explored whether cysteine post-translational modifications and their 342 

microenvironments exhibited any preferences for different taxonomic kingdoms. To investigate this 343 

question, the normalized populations of different Cysteine microenvironment clusters were compared 344 

across the proteins from different kingdoms (Table 6). The microenvironment cluster population (number 345 

of Cysteines in each cluster) was normalized by the number of Cysteines, per kingdom. Most of the 346 

Cysteine microenvironments were maximally populated in the ”buried-hydrophobic” clusters as per the 347 

hydrophobic nature of the Cysteine. However, a significant population of Cysteine microenvironment was 348 

observed in the “buried-hydrophilic” region from proteins of Archaebacteria and bacteria kingdoms. This 349 

could presumably be attributed to the extremophile nature of bacteria (n=139) out of 146 Cysteine in the 350 

same cluster. In general, the “exposed-hydrophilic” microenvironment was least populated around 351 

Cysteine residues. However, for viruses, the Cysteine microenvironment population was significant in that 352 

cluster, compared to those in other kingdoms. This observation plausibly indicated the possible exposure 353 

of the catalytic Cysteine residues on the viral protein surfaces.  354 

 355 

 356 

 357 



Figure 7: Simple tree representing the species in this study based on taxonomy: bacteria (left), virus and 358 

archaebacteria (middle), and eukaryotes (right). The figure was generated using Interactive Tree of Life 359 

(ITOL) version 7 (Letunic and Bork 2024) 360 

 361 

 362 

Figure 8. Simple tree for disease-causing bacteria, classified according to their taxonomy. The number of 363 

species per genera is shown on the connecting branch. One example per genera is shown for clarity.  The 364 

figure was generated using Interactive Tree of Life (ITOL) version 7  365 

 366 

Table 6: Normalized Cysteine populations in different kingdoms across microenvironment clusters. 367 

Significant numbers are reported in bold. 368 

Domain Kingdom Eukaryotes Archaebacteria Viruses Bacteria 

Buried 

hydrophobic 

0.66 0.53 0.55 0.53 

Buried hydrophilic  0.29 0.40 0.31 0.38 

Exposed 

hydrophilic  

0.03 0.06 0.13 

 

 

 

0.08 

 369 



Preferences of Cysteine post-translational modifications and their microenvironments towards different 370 

diseases: 371 

There were twenty diseases reported in CysDuF database caused by 156 different species (Figure 9). Most 372 

of those were bacterial species (n=101). The full list of pathogens and the diseases caused by those are 373 

reported (Table S4). 374 

 375 

Figure 9: Counts of functional Cysteines across twenty different diseases, categorized according to protein 376 

microenvironments. The figure is generated using Microsoft Excel 365 suite 377 

One hundred and forty-two Cysteine residues were present in the DUF proteins belonging to disease-378 

causing bacterial species. Those 142 Cysteine residues were classified, into thirteen bacterial infections, 379 

categorized based on anatomy (organs) (Figure 10).  380 



 381 

Figure 10: Disease-causing bacteria infecting different organs, categories based on anatomy.  Counts of 382 

Cysteine residues present in DUF proteins per disease category are shown. The figure was generated using 383 

Microsoft Excel 365 suite. 384 

DUF proteins involved in viral diseases (n=10) were classified as Animal inherited diseases specifically 385 

infecting human (Table S4). The DUF proteins related to SARS-COV-2 virus causing lung diseases were 386 

reported for the first time, in this database. A few fungal diseases (n=8) associated with DUF proteins were 387 

reported those mainly invade plants. The parasitic (worm) infections (n=14), were caused by Liver Fluke 388 

(n=5), Hookworm (n=2), and parasitic worm (n=7) (Table S4). The protozoan diseases (n=15) reported in 389 

this DUF database were mostly animal-inherited (n=13). Two human protozoan diseases were reported 390 

causing Gastric, by Entamoeba histolytica (n=1) and Sexually Transmitted Diseases/Urinary Tract 391 

Infections, caused by Trichomonas vaginalis (n=1). There were eight plant diseases (n=8) reported here 392 

caused by bacteria and fungi. 393 

We explored whether cysteine post-translational modifications and their microenvironments exhibited 394 

any preferences toward diseases. To investigate this question, the normalized populations of different 395 

Cysteine microenvironment clusters were compared across the proteins from different diseases (Table 396 

S5). The microenvironment cluster population (number of Cysteines in each cluster) was normalized by 397 

the number of Cysteines, per disease. Most of the Cysteine microenvironments were maximally populated 398 

in ”buried hydrophobic” cluster, as per the hydrophobic nature of the Cysteine. Some outliers were 399 

observed, where functional cysteines from disease-causing viruses and bacteria (namely, Coronavirus, 400 

Clostridium botulinum, Mycobacterium tuberculosis, Shewanella frigidimarina) were embedded in the 401 

exposed-hydrophilic microenvironment (Figure 9). The maximum population of Cysteine 402 

microenvironments in the “buried-hydrophilic” cluster was observed in bacteria causing pneumonia, soft 403 

tissue, and biliary tract infection. In the previous section, we reported that functional Cysteines from Virus 404 



and Bacteria kingdoms were populated in the “exposed or buried hydrophilic” microenvironment (Table 405 

6).  406 

The observation of solvent-exposure of catalytic Cysteine from viruses in DUF proteins was supported by 407 

the crystallographic observations: an example, Cys111, catalytic residue from MERS Corona Virus (DUF ID: 408 

DUF1175) was exposed on the protein surface and underwent disulfide bond formation with β-409 

mercaptoethanol in the crystal structure (PDB ID: 4R3D); (Ali Dahhas et al. 2023). This Cysteine111 in our 410 

database was identified in the exposed-hydrophilic microenvironment, with the predicted S-sulfenylation 411 

modification (an oxidized state of the thiol group).  The same Cysteine residue was reported to undergo 412 

ROS-induced oxidative stress leading to thiol-disulfide disbalance and further oxidation of cysteine, such 413 

as sulfenylation (Yang 2022).  In the DUF protein (DUF: DUF455) from Mycobacterium tuberculosis 414 

(tuberculosis causing-bacteria), Cys70 formed a zwitter ionic catalytic triad with His110 and Asp127 and 415 

the thiolate acted as a nucleophile, thus the Cysteine required hydrophilic microenvironment, concurring 416 

with our observation (PDB:4BGF) (Abuhammad et al. 2013). The presence of thioether bonds in the 417 

“exposed hydrophilic” microenvironment, around Cysteines from DUF proteins (DUF: DUF4333) in 418 

Shewanella frigidimarina causing Soft tissue infection and Biliary Tract diseases were reported in the 419 

literature (Bamford, V et al 1999) (PDB:1QO8), (PDB:1QJB).  420 

 421 

 422 

Web Application: 423 

a) DeepCys Web Application: 424 

A user-friendly web application DeepCys (https:/deepcys.bits-hyderabad.ac.in) was built using the Flask 425 

web framework. The input, output, and work flow of the web application are shown (Figure 11a). The web 426 

application is deployed using the NGINX and http reverse proxy server. The structure-based prediction tool 427 

can be accessed by clicking the prediction button on the navigation bar. The web application has a form 428 

that requests three inputs corresponding to a cysteine namely, (a) PDB ID of the protein, (B) Chain ID, and 429 

(C) Residue of the Cys.  Based on these inputs additional parameters were internally computed to predict 430 

four probability values and the most probable Cysteine modifications. 431 

 432 



433 

 434 

 435 



 436 

 437 

 438 

Figure 11: Web Application for a) DeepCys – Structure-Based Prediction Tool and b) CysDUF Database. 439 

The web application screenshots were processed using Microsoft power point 365 suite. 440 

b) DUF Database Web Application: 441 

A user-friendly web application DUF Database (https://cysduf.bits-hyderabad.ac.in/) was built using the 442 

Flask web framework. The flowchart for input, output, and the internal storage of information used in this 443 

web application is shown (Figure 11b). The web application is deployed using the NGINX and HTTP reverse 444 

proxy server. The DUF database application has a form that requests any one of three inputs - PDB ID, DUF 445 

ID, or PFAM ID. The results are downloadable in multiple formats, CSV, Text or JSON.  446 

Conclusions: 447 

With the advent of high-throughput structure prediction methods, a large number of protein structures, 448 

including DUF proteins were experimentally solved which required functional characterization. The rigor, 449 

expense, and time required for experimental characterization, could be reduced by computational 450 

approaches. Aim of this study was to characterize and annotate the functions of catalytic Cysteine in DUF 451 

proteins, using computational methods. Annotation and characterization of functional Cysteine in DUF 452 

proteins were performed on seven biochemical processes, namely, Electron Transport Chain, Glutathione 453 

Metabolism, Fe-S-Cluster Biogenesis, Fatty Acid Synthesis, Photosynthesis, Kreb’s Cycle, and Pentose 454 

phosphate pathway. Cysteine post-translation modifications were predicted using DeepCys software, and 455 

the results were validated with the experimental findings reported in the PDB header files. Structure-456 

based protein microenvironment computation was done using software, developed earlier. The sequence, 457 

structure, microenvironment, disease, biochemical pathways related to the DUF proteins, and their 458 

functional Cysteines were consolidated in a database, CysDUF.  This database was the first of its kind that 459 

stores and retrieves Cysteine functional annotations in DUF proteins and elucidated on seven different 460 

pathways. The detailed elucidation of Cysteine protein microenvironments in all the DUF proteins revealed 461 



that, in general, Cysteine residues were embedded in buried hydrophobic microenvironments. However, 462 

in certain viral proteins, functional Cysteine residues were embedded in the exposed and hydrophilic 463 

microenvironments. This secondary database would serve as a reference guide to the functional Cysteines 464 

of DUF proteins and related information. There is a scope for improvement in the Cysteine function 465 

prediction, as the current method predicts only four Cysteine post-translational modifications, this was 466 

due to the limited availability of PDB crystal structure data while training the Deep Neural Network. The 467 

prediction method could be complemented using the sequence-based method, albeit, less accurate 468 

compared to the structure-based method, where sufficient data is available for a larger number of Cysteine 469 

post-translational modifications to train Deep Neural Network models. Prediction of a larger number of 470 

Cysteine modifications would add further significance to the database. 471 
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